
Runtime
Expressions

CS 251 - Data Structures
and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Let’s formalize a few things
Definitions

Runtime Expressions
Counting instructions in terms
of the input size

01

02

3

Definitions

01
Let’s formalize a few things

4

Algorithms

“Informally, an algorithm is any well-defined
computational procedure that takes some value,
or set of values, as input and produces some
value, or set of values, as output. An algorithm is
thus a sequence of computational steps that
transform the input into the output.”

- Cormen, Thomas H.; Leiserson, Charles E.;
Rivest, Ronald L.; Stein, Clifford. Introduction to
Algorithms (The MIT Press) (p. 5). The MIT Press.
Kindle Edition.

5

Algorithms Are:

PreciseEffective Finite

“No more, no less”Return correct
results

Run in a limited
amount of
time/steps

6

Should an
algorithm be

efficient?
7

8

algorithm isprime1(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to n-1 do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

algorithm isprime2(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to sqrt(n) do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

Both isprime1 and isprime2 are algorithms. Yet, isprime2 is more
efficient than isprime1 in terms of the number of steps required to
reach an answer for the same input value.

Data Structures

“A data structure is a collection of data values,
the relationships among them, and the functions
or operations that can be applied to the data. If
any one of these three characteristics is missing
or not stated precisely, the structure being
examined does not qualify as a data structure.”

- Peter Wegner and Edwin D. Reilly. 2003. Data
structures. Encyclopedia of Computer Science.
John Wiley and Sons Ltd., GBR, 507–512.

9

A Few Data Structure Examples

Array type:
Bit array
Bit field
Bitboard
Bitmap
Circular buffer
Control table
Image
Dope vector
Dynamic array
Gap buffer
Hashed array tree
Lookup table
Matrix
Sorted array
Sparse matrix
…

Linked List type:
Doubly linked list
Array list
Linked list
Association list
Self-organizing list
Skip list
Unrolled linked list
VList
Conc-tree list
Xor linked list
Zipper
Doubly connected edge list
Difference list
Free list
…

Tree type:
AA tree
AVL tree
Binary search tree
Binary tree
Cartesian tree
Conc-tree list
Order statistic tree
Pagoda
Red–black tree
Rope
Scapegoat tree
Splay tree
T-tree
Tango tree
Treap
…

Graph type:
Adjacency list
Adjacency matrix
Graph-structured stack
Scene graph
Decision tree
Binary decision diagram
And-inverter graph
Directed graph
Directed acyclic graph
Multigraph
Hypergraph
…

10

https://xlinux.nist.gov/dads/ 11

https://xlinux.nist.gov/dads/

Traditional Data Structure Functions

add (key [,item])
insert (key [,item])
edit (key [,item])
update (key [,item])
delete (key)
swap (key1, key2)

at (key) → item
find (key) → item
get (key) → item
search (key) → item
lookup (key) → item
exists (key) → boolean

Read Write

12

Could we design
data structures
without
algorithms?

Could we design
algorithms
without data
structures?

13

We Analyze DS and Algos Because:

Predict Performance

“How much time/space
does it require?”

Comparison

“Which one is [objectively]
better?”

Provide Guarantees

“Will it always work?”

Theoretical Basis

“What can we built on
top of them?”

01

03 04

02

14

Runtime Expressions
02

Counting instructions in terms of the
input size

15

Analysis Challenges

Why does my program
run out of memory?

Why is my program so
slow?

Time Space

16

Idea

𝑇 𝑛 =෍

𝑖

𝑐𝑖𝑛𝑖

Where 𝑖 is an operation, 𝑐𝑖 is the cost of operation 𝑖, 𝑛 = 𝑥 is the input size, 𝑥 is the input

Total running time: sum of cost x frequency for each operation 𝑖
Need to determine the set of operations

Costs depends on machine/compiler
Frequency depends on algorithm and input data

17

Runtime
Expression
𝑇(𝑛)

A function that “counts” the number of
steps or instructions an algorithm runs
in terms of the input size.

Example: 𝑇(𝑛) for the cost of printing
“Peekabo” 𝑛 times:

for i from 1 to n do
print(“Peekaboo”)

end for

Let 𝑐𝑝 be the cost of a print statement.

𝑇 𝑛 =෍

𝑖=1

𝑛

𝑐𝑝 = 𝑐𝑝𝑛

Note: You should remember this
topic from CS 182.

18

A single pseudocode snippet could have multiple runtime expressions. It depends on which
operation/task you focus on. Here are two 𝑇(𝑛) for the pseudocode snippet below.

for i from 0 to n-1 do
print(i)

end for

1. Closed-form expression for the print calls. Let 𝑐𝑝 be the cost of a print call:

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

𝑐𝑝 = 𝑐𝑝(𝑛 − 1 + 1) = 𝑐𝑝𝑛

2. Closed-form expression for the variable declarations. Let 𝑐𝑑 be the cost of a variable
declaration:

𝑇 𝑛 = 𝑐𝑑

Q: When does it declare a variable?
A: When defining the for loop (it needs variable i)

19

20

Here is another pseudocode snippet:

sum ← 0
for i from 0 to n do

sum ← sum + i
end for

Closed-form expression for the number of variable assignments. Let 𝑐𝑎 be the cost of an
assignment:

𝑇 𝑛 = 𝑐𝑎 +෍

𝑖=0

𝑛

2𝑐𝑎 + 𝑐𝑎 = 2𝑐𝑎 + 2𝑐𝑎 𝑛 + 1 = 2𝑐𝑎𝑛 + 4𝑐𝑎

sum ← 0

Assigning new values to i and sum for
all iterations of the for loop

i ← n+1

(exiting the for loop)

sum ← 0
for i from 0 to n do

sum ← sum + i
end for

Closed-form expression for the compares. Let 𝑐𝑐 be the cost of a compare:

𝑇 𝑛 = ෍

𝑖=0

𝑛+1

𝑐𝑐 = 𝑐𝑐 𝑛 + 1 + 1 = 𝑐𝑐𝑛 + 2𝑐𝑐

Closed-form expression for the value of sum in terms of n after running the code snippet:

𝑇 𝑛 =෍

𝑖=0

𝑛

𝑖 =
𝑛 𝑛 + 1

2
=
1

2
𝑛2 +

1

2
𝑛

21

Note that variable increments could be different than 1:

for i from 0 to n by 2 do
print(i)

end for

How do we get the closed-form expression for the print calls?

Strategy: Since 𝑖 increases by 2, express its sequence in terms of increments by 1:

𝑖 = 0, 2, 4, 6, 8, … , 𝑛 = 2 ∙ 0, 2 ∙ 1, 2 ∙ 2, 2 ∙ 3, 2 ∙ 4,… , 2 ∙
𝑛

2

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

𝑐𝑝 = 𝑐𝑝 ෍

𝑘=0

𝑛
2

1 = 𝑐𝑝
𝑛

2
+ 1 =

1

2
𝑐𝑝𝑛 + 𝑐𝑝

22

Note that variable increments could be different than 1:

for i from 1 to n by multiplying by 2 do
print(i)

end for

How do we get the closed-form expression for the print calls?

Strategy: Express the sequence in terms of increments by 1:

First iteration: 𝑖 = 1 = 20

Second iteration: 𝑖 = 2 = 21

Third iteration: 𝑖 = 4 = 22

Fourth iteration: 𝑖 = 8 = 23

Fifth iteration: 𝑖 = 16 = 24

…
Last iteration: 𝑖 = 2𝑘 ≤ 𝑛 ⇒ 𝑘 ≤ log2(𝑛)

𝑇 𝑛 = ෍

𝑘=0

log2(𝑛)

𝑐𝑝 = 𝑐𝑝(log2 𝑛 + 1) = 𝑐𝑝 log2 𝑛 + 𝑐𝑝

23

Note that loop structures could be nested:

for i from 0 to n do
for j from 1 to n-1 do

print(i + j)
end for

end for

How do we get the closed-form expression for the print calls?

𝑇 𝑛 =෍

𝑖=0

𝑛

෍

𝑗=1

𝑛−1

𝑐𝑝 =෍

𝑖=0

𝑛

𝑐𝑝(𝑛 − 1) = 𝑐𝑝 𝑛 − 1 𝑛 + 1 = 𝑐𝑝𝑛
2 − 𝑐𝑝

24

Note that loop structures could be nested:

for i from 0 to n by 2 do
for j from 1 to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=1

𝑛−1

𝑛 = ෍

𝑘=0

𝑛
2

𝑛(𝑛 − 1) = 𝑛 𝑛 − 1
𝑛

2
+ 1 =

1

2
𝑛3 +

1

2
𝑛2 − 𝑛

25Try it on Wolfram Alpha: sum(sum n for j from 1 to n-1) for k from 0 to n/2

Note that loop structures could be nested:

for i from 0 to n do
for j from i to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the
pseudocode snippet above is:

𝑇 𝑛 =෍

𝑖=0

𝑛

෍

𝑗=𝑖

𝑛−1

𝑛 =෍

𝑖=0

𝑛

෍

𝑗=0

𝑛−1

𝑛 −෍

𝑗=0

𝑖−1

𝑛 =෍

𝑖=0

𝑛

𝑛 𝑛 − 1 + 1 − 𝑛(𝑖 − 1 + 1)

=෍

𝑖=0

𝑛

𝑛2 − 𝑖𝑛 =෍

𝑖=0

𝑛

𝑛2 −෍

𝑖=0

𝑛

𝑖𝑛 = 𝑛2 𝑛 + 1 − 𝑛
𝑛 𝑛 + 1

2
= 𝑛2 𝑛 + 1 −

1

2
𝑛2 𝑛 + 1

=
1

2
𝑛2 𝑛 + 1 =

1

2
𝑛3 +

1

2
𝑛2

26Try it on Wolfram Alpha: sum(sum n for j from i to n-1) for i from 0 to n

Note that loop structures could be nested:

for i from 0 to n by 2 do
for j from i to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=2𝑘

𝑛−1

𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=0

𝑛−1

𝑛 − ෍

𝑗=0

2𝑘−1

𝑛 =෍

𝑖=0

𝑛
2

𝑛2 − 2𝑘𝑛 =෍

𝑖=0

𝑛
2

𝑛2 −෍

𝑖=0

𝑛
2

2𝑘𝑛

= 𝑛2
𝑛

2
+ 1 − 2𝑛

𝑛
2

𝑛
2
+ 1

2
=
𝑛3

2
+ 𝑛2 −

𝑛3

4
−
𝑛2

2
=
1

4
𝑛3 +

1

2
𝑛2

27Try it on Wolfram Alpha: sum(sum n for j from 2k to n-1) for k from 0 to n/2

Note that, when working with logarithms, it is fine to give approximate results by skipping the
base. We can do this thanks to the properties of logarithms (i.e., change of base):

for i from 1 to n by multiplying by 3 do
foo(i + j, n)

end for

Let log 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using
the pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

log3(𝑛)

log(𝑛) = log 𝑛 log3 𝑛 + 1 ≈ log 𝑛 log 𝑛 + log 𝑛

= log2 𝑛 + log 𝑛

28

Note that, when working with logarithms, it is fine to give approximate results by skipping the
base. We can do this thanks to the properties of logarithms (i.e., change of base):

for i from 1 to n by i do
foo(i + j, n)

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

log2(𝑛)

𝑛 = 𝑛 log2 𝑛 + 1 = 𝑛 log2 𝑛 + 𝑛 ≈ 𝑛 log 𝑛 + 𝑛

29

Closed-form expression for the divisions
made by isprime1 for a prime number n:

𝑇 𝑛 = ෍

𝑖=2

𝑛−1

1 = ෍

𝑖=1

𝑛−1

1 − 1 = 𝑛 − 1 − 1

= 𝑛 − 1 − 1 = 𝑛 − 2

30

algorithm isprime1(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to n-1 do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

Closed-form expression for the divisions
made by isprime2 for a prime number n:

𝑇 𝑛 =෍

𝑖=2

𝑛

1 =෍

𝑖=1

𝑛

1 − 1 = 𝑛 − 1

31

algorithm isprime2(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to sqrt(n) do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

algorithm ThreeSum(A:array) → integer
let n be the length of A
count ← 0

for i from 0 to n–1 do
for j from i+1 to n-1 do

for k from j+1 to n-1 do
if A[i] + A[j] + A[k] = 0 then

count ← count + 1
end if

end for
end for

end for

return count
end algorithm

Closed-form expression for the array
accesses made by ThreeSum:

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=𝑖+1

𝑛−1

෍

𝑘=𝑗+1

𝑛−1

3

…after lots of steps…

𝑇(𝑛) =
1

2
𝑛3 −

3

2
𝑛2 + 𝑛

Type in Wolfram Alpha: sum (sum (sum 3, k=j+1 to n-1), j=i+1 to n-1), i=0 to n-1 32

Example: Selection Sort

algorithm SelectionSort(A:array) → array
let n be the length of A

for i from 0 to n-2 do
idx ← i
for j from i + 1 to n-1 do

if A[j] < A[idx] then
idx ← j

end if
end for
if i ≠ idx then

swap(A, i, idx)
end if

end for

return A
end algorithm

33

Algorithm: select the smallest item to put into
the current slot.

Let 𝐴 be an array of length 𝑛 storing unique
items.

Q: What if 𝐴 is already sorted?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 = 0

Q: What if 𝐴 is sorted in descending order?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 =
1

2
𝑛

Think about an array 𝐴 for which the number of swaps is larger than 1

2
𝑛 .

Example: Insertion Sort

algorithm InsertionSort(A:array) → array
let n be the length of A

for i from 1 to n-1 do
j ← i - 1
while j >= 0 and A[j] > A[j + 1] do

swap(A, j, j + 1)
j ← j - 1

end while
end for

return A
end algorithm

34

Algorithm: Insert the current item into the proper
slot in the sorted part of the array (left).

Let 𝐴 be an array of length 𝑛 storing unique
items.

Q: What if 𝐴 is already sorted?
#compares: 𝑇 𝑛 = 𝑛 − 1
#swaps: 𝑇 𝑛 = 0

Q: What if 𝐴 is sorted in descending order?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 =
1

2
𝑛2 −

1

2
𝑛

Example: Matrix Multiplication

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

#multiplications = 8, #additions = 4

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑗 𝑘 𝑙
𝑚 𝑛 𝑜
𝑝 𝑞 𝑟

=

𝑎𝑗 + 𝑏𝑚 + 𝑐𝑝 𝑎𝑘 + 𝑏𝑛 + 𝑐𝑞 𝑎𝑙 + 𝑏𝑜 + 𝑐𝑟
𝑑𝑗 + 𝑒𝑚 + 𝑓𝑝 𝑑𝑘 + 𝑒𝑛 + 𝑓𝑞 𝑑𝑙 + 𝑒𝑜 + 𝑓𝑟
𝑔𝑗 + ℎ𝑚 + 𝑖𝑝 𝑔𝑘 + ℎ𝑛 + 𝑖𝑞 𝑔𝑙 + ℎ𝑜 + 𝑖𝑟

#multiplications = 27, #additions = 18

35

Closed-form expression for the
additions and multiplications made by
mult. Keep track of these numbers by
using constants 𝑎 and 𝑚, respectively.

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

෍

𝑘=0

𝑛−1

𝑚+ 𝑎

= ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚+ 𝑎 𝑛 = ෍

𝑖=0

𝑛−1

𝑚+ 𝑎 𝑛2

= 𝑚+ 𝑎 𝑛3 = 𝑚𝑛3 + 𝑎𝑛3

More additions than expected! 

36

algorithm mult(A:matrix, B:matrix) → matrix

assume A and B are of dimension nxn
let C be a matrix of dimension nxn

for i from 0 to n-1 do
for j from 0 to n-1 do

C[i][j] ← 0

for k from 0 to n-1 do
C[i][j] ← C[i][j] + A[i][k] * B[k][j]

end for

end for
end for

return C

end algorithm

Closed-form expression for the
additions and multiplications made by
mult. Keep track of these numbers by
using constants 𝑎 and 𝑚, respectively.

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚 +෍

𝑘=1

𝑛−1

𝑚+ 𝑎

= ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚+ 𝑚+ 𝑎 𝑛 − 1

= ෍

𝑖=0

𝑛−1

𝑚+ 𝑚+ 𝑎 𝑛 − 1 𝑛

= 𝑚+ 𝑚+ 𝑎 𝑛 − 1 𝑛2

= 𝑚𝑛2 +𝑚𝑛3 −𝑚𝑛2 + 𝑎𝑛3 − 𝑎𝑛2

= 𝑚𝑛3 + 𝑎𝑛2 𝑛 − 1

The number of additions we expected! ☺
Still a cubic number of multiplications 

37

algorithm mult(A:matrix, B:matrix) → matrix

assume A and B are of dimension nxn
let C be a matrix of dimension nxn

for i from 0 to n-1 do
for j from 0 to n-1 do

C[i][j] ← A[i][0] * B[0][j]

for k from 1 to n-1 do
C[i][j] ← C[i][j] + A[i][k] * B[k][j]

end for

end for
end for

return C

end algorithm

Matrix Multiplication Algorithm Goal

https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/ 38

https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

That’s Enough Counting

Do you have any questions?

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Runtime Expressions
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Definitions
	Slide 5: Algorithms
	Slide 6: Algorithms Are:
	Slide 7: Should an algorithm be efficient?
	Slide 8
	Slide 9: Data Structures
	Slide 10: A Few Data Structure Examples
	Slide 11
	Slide 12: Traditional Data Structure Functions
	Slide 13
	Slide 14: We Analyze DS and Algos Because:
	Slide 15: Runtime Expressions
	Slide 16: Analysis Challenges
	Slide 17: cap T of n , equals sum over i. of , c sub i. , n sub i. , end summation
	Slide 18: Runtime Expression cap T open paren n close paren
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Example: Selection Sort
	Slide 34: Example: Insertion Sort
	Slide 35: Example: Matrix Multiplication
	Slide 36
	Slide 37
	Slide 38: Matrix Multiplication Algorithm Goal
	Slide 39: That’s Enough Counting

