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Algorithms

“Informally, an algorithm is any well-defined 
computational procedure that takes some value, 
or set of values, as input and produces some 
value, or set of values, as output. An algorithm is 
thus a sequence of computational steps that 
transform the  input into the output.”

- Cormen, Thomas H.; Leiserson, Charles E.; 
Rivest, Ronald L.; Stein, Clifford. Introduction to 
Algorithms (The MIT Press) (p. 5). The MIT Press. 
Kindle Edition. 
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Algorithms Are:

PreciseEffective Finite

“No more, no less”Return correct 
results

Run in a limited 
amount of 
time/steps
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Should an 
algorithm be 

efficient?
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algorithm isprime1(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to n-1 do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

algorithm isprime2(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to sqrt(n) do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm

Both isprime1 and isprime2 are algorithms. Yet, isprime2 is more 
efficient than isprime1 in terms of the number of steps required to 
reach an answer for the same input value.



Data Structures

“A data structure is a collection of data values, 
the relationships among them, and the functions 
or operations that can be applied to the data. If 
any one of these three characteristics is missing 
or not stated precisely, the structure being 
examined does not qualify as a data structure.”

- Peter Wegner and Edwin D. Reilly. 2003. Data 
structures. Encyclopedia of Computer Science. 
John Wiley and Sons Ltd., GBR, 507–512.
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A Few Data Structure Examples

Array type:
Bit array
Bit field
Bitboard
Bitmap
Circular buffer
Control table
Image
Dope vector
Dynamic array
Gap buffer
Hashed array tree
Lookup table
Matrix
Sorted array
Sparse matrix
…

Linked List type:
Doubly linked list
Array list
Linked list
Association list
Self-organizing list
Skip list
Unrolled linked list
VList
Conc-tree list
Xor linked list
Zipper
Doubly connected edge list
Difference list
Free list
…

Tree type:
AA tree
AVL tree
Binary search tree
Binary tree
Cartesian tree
Conc-tree list
Order statistic tree
Pagoda
Red–black tree
Rope
Scapegoat tree
Splay tree
T-tree
Tango tree
Treap
…

Graph type:
Adjacency list
Adjacency matrix
Graph-structured stack
Scene graph
Decision tree
Binary decision diagram
And-inverter graph
Directed graph
Directed acyclic graph
Multigraph
Hypergraph
…
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Traditional Data Structure Functions

add (key [,item])
insert (key [,item])
edit (key [,item])
update (key [,item])
delete (key)
swap (key1, key2)

at (key) → item
find (key) → item
get (key) → item
search (key) → item
lookup (key) → item
exists (key) → boolean

Read Write
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Could we design 
data structures 
without 
algorithms?

Could we design 
algorithms 
without data 
structures?
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We Analyze DS and Algos Because:

Predict Performance

“How much time/space 
does it require?”

Comparison

“Which one is [objectively] 
better?”

Provide Guarantees

“Will it always work?”

Theoretical Basis

“What can we built on 
top of them?”

01

03 04

02
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Runtime Expressions
02

Counting instructions in terms of the 
input size
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Analysis Challenges

Why does my program 
run out of memory?

Why is my program so 
slow?

Time Space
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Idea

𝑇 𝑛 =෍

𝑖

𝑐𝑖𝑛𝑖

Where 𝑖 is an operation, 𝑐𝑖 is the cost of operation 𝑖,  𝑛 = 𝑥 is the input size, 𝑥 is the input

Total running time: sum of cost x frequency for each operation 𝑖
Need to determine the set of operations

Costs depends on machine/compiler
Frequency depends on algorithm and input data
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Runtime 
Expression 
𝑇(𝑛)

A function that “counts” the number of 
steps or instructions an algorithm runs 
in terms of the input size.

Example: 𝑇(𝑛) for the cost of printing 
“Peekabo” 𝑛 times:

for i from 1 to n do
print(“Peekaboo”)

end for

Let 𝑐𝑝 be the cost of a print statement.

𝑇 𝑛 =෍

𝑖=1

𝑛

𝑐𝑝 = 𝑐𝑝𝑛

Note: You should remember this 
topic from CS 182.
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A single pseudocode snippet could have multiple runtime expressions. It depends on which 
operation/task you focus on. Here are two 𝑇(𝑛) for the pseudocode snippet below.

for i from 0 to n-1 do
print(i)

end for

1. Closed-form expression for the print calls. Let 𝑐𝑝 be the cost of a print call:

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

𝑐𝑝 = 𝑐𝑝(𝑛 − 1 + 1) = 𝑐𝑝𝑛

2. Closed-form expression for the variable declarations. Let 𝑐𝑑 be the cost of a variable 
declaration:

𝑇 𝑛 = 𝑐𝑑

Q: When does it declare a variable?
A: When defining the for loop (it needs variable i)
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Here is another pseudocode snippet:

sum ← 0
for i from 0 to n do

sum ← sum + i
end for

Closed-form expression for the number of variable assignments. Let 𝑐𝑎 be the cost of an 
assignment:

𝑇 𝑛 = 𝑐𝑎 +෍

𝑖=0

𝑛

2𝑐𝑎 + 𝑐𝑎 = 2𝑐𝑎 + 2𝑐𝑎 𝑛 + 1 = 2𝑐𝑎𝑛 + 4𝑐𝑎

sum ← 0

Assigning new values to i and sum for 
all iterations of the for loop

i ← n+1

(exiting the for loop)



sum ← 0
for i from 0 to n do

sum ← sum + i
end for

Closed-form expression for the compares. Let 𝑐𝑐 be the cost of a compare:

𝑇 𝑛 = ෍

𝑖=0

𝑛+1

𝑐𝑐 = 𝑐𝑐 𝑛 + 1 + 1 = 𝑐𝑐𝑛 + 2𝑐𝑐

Closed-form expression for the value of sum in terms of n after running the code snippet:

𝑇 𝑛 =෍

𝑖=0

𝑛

𝑖 =
𝑛 𝑛 + 1

2
=
1

2
𝑛2 +

1

2
𝑛
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Note that variable increments could be different than 1:

for i from 0 to n by 2 do
print(i)

end for

How do we get the closed-form expression for the print calls?

Strategy: Since 𝑖 increases by 2, express its sequence in terms of increments by 1:

𝑖 = 0, 2, 4, 6, 8, … , 𝑛 = 2 ∙ 0, 2 ∙ 1, 2 ∙ 2, 2 ∙ 3, 2 ∙ 4,… , 2 ∙
𝑛

2

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

𝑐𝑝 = 𝑐𝑝 ෍

𝑘=0

𝑛
2

1 = 𝑐𝑝
𝑛

2
+ 1 =

1

2
𝑐𝑝𝑛 + 𝑐𝑝
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Note that variable increments could be different than 1:

for i from 1 to n by multiplying by 2 do
print(i)

end for

How do we get the closed-form expression for the print calls?

Strategy: Express the sequence in terms of increments by 1:

First iteration: 𝑖 = 1 = 20

Second iteration: 𝑖 = 2 = 21

Third iteration: 𝑖 = 4 = 22

Fourth iteration: 𝑖 = 8 = 23

Fifth iteration: 𝑖 = 16 = 24

…
Last iteration: 𝑖 = 2𝑘 ≤ 𝑛 ⇒ 𝑘 ≤ log2(𝑛)

𝑇 𝑛 = ෍

𝑘=0

log2(𝑛)

𝑐𝑝 = 𝑐𝑝(log2 𝑛 + 1) = 𝑐𝑝 log2 𝑛 + 𝑐𝑝
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Note that loop structures could be nested:

for i from 0 to n do
for j from 1 to n-1 do

print(i + j)
end for

end for

How do we get the closed-form expression for the print calls?

𝑇 𝑛 =෍

𝑖=0

𝑛

෍

𝑗=1

𝑛−1

𝑐𝑝 =෍

𝑖=0

𝑛

𝑐𝑝(𝑛 − 1) = 𝑐𝑝 𝑛 − 1 𝑛 + 1 = 𝑐𝑝𝑛
2 − 𝑐𝑝
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Note that loop structures could be nested:

for i from 0 to n by 2 do
for j from 1 to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the 
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=1

𝑛−1

𝑛 = ෍

𝑘=0

𝑛
2

𝑛(𝑛 − 1) = 𝑛 𝑛 − 1
𝑛

2
+ 1 =

1

2
𝑛3 +

1

2
𝑛2 − 𝑛

25Try it on Wolfram Alpha: sum(sum n for j from 1 to n-1) for k from 0 to n/2



Note that loop structures could be nested:

for i from 0 to n do
for j from i to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the 
pseudocode snippet above is:

𝑇 𝑛 =෍

𝑖=0

𝑛

෍

𝑗=𝑖

𝑛−1

𝑛 =෍

𝑖=0

𝑛

෍

𝑗=0

𝑛−1

𝑛 −෍

𝑗=0

𝑖−1

𝑛 =෍

𝑖=0

𝑛

𝑛 𝑛 − 1 + 1 − 𝑛(𝑖 − 1 + 1)

=෍

𝑖=0

𝑛

𝑛2 − 𝑖𝑛 =෍

𝑖=0

𝑛

𝑛2 −෍

𝑖=0

𝑛

𝑖𝑛 = 𝑛2 𝑛 + 1 − 𝑛
𝑛 𝑛 + 1

2
= 𝑛2 𝑛 + 1 −

1

2
𝑛2 𝑛 + 1

=
1

2
𝑛2 𝑛 + 1 =

1

2
𝑛3 +

1

2
𝑛2

26Try it on Wolfram Alpha: sum(sum n for j from i to n-1) for i from 0 to n



Note that loop structures could be nested:

for i from 0 to n by 2 do
for j from i to n-1 do

foo(i + j, n)
end for

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the 
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=2𝑘

𝑛−1

𝑛 = ෍

𝑘=0

𝑛
2

෍

𝑗=0

𝑛−1

𝑛 − ෍

𝑗=0

2𝑘−1

𝑛 =෍

𝑖=0

𝑛
2

𝑛2 − 2𝑘𝑛 =෍

𝑖=0

𝑛
2

𝑛2 −෍

𝑖=0

𝑛
2

2𝑘𝑛

= 𝑛2
𝑛

2
+ 1 − 2𝑛

𝑛
2

𝑛
2
+ 1

2
=
𝑛3

2
+ 𝑛2 −

𝑛3

4
−
𝑛2

2
=
1

4
𝑛3 +

1

2
𝑛2

27Try it on Wolfram Alpha: sum(sum n for j from 2k to n-1) for k from 0 to n/2



Note that, when working with logarithms, it is fine to give approximate results by skipping the 
base. We can do this thanks to the properties of logarithms (i.e., change of base):

for i from 1 to n by multiplying by 3 do
foo(i + j, n)

end for

Let log 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using 
the pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

log3(𝑛)

log(𝑛) = log 𝑛 log3 𝑛 + 1 ≈ log 𝑛 log 𝑛 + log 𝑛

= log2 𝑛 + log 𝑛

28



Note that, when working with logarithms, it is fine to give approximate results by skipping the 
base. We can do this thanks to the properties of logarithms (i.e., change of base):

for i from 1 to n by i do
foo(i + j, n)

end for

Let 𝑛 be the cost of a single foo call. The closed-form expression for the foo calls using the 
pseudocode snippet above is:

𝑇 𝑛 = ෍

𝑘=0

log2(𝑛)

𝑛 = 𝑛 log2 𝑛 + 1 = 𝑛 log2 𝑛 + 𝑛 ≈ 𝑛 log 𝑛 + 𝑛
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Closed-form expression for the divisions
made by isprime1 for a prime number n:

𝑇 𝑛 = ෍

𝑖=2

𝑛−1

1 = ෍

𝑖=1

𝑛−1

1 − 1 = 𝑛 − 1 − 1

= 𝑛 − 1 − 1 = 𝑛 − 2

30

algorithm isprime1(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to n-1 do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm



Closed-form expression for the divisions
made by isprime2 for a prime number n:

𝑇 𝑛 =෍

𝑖=2

𝑛

1 =෍

𝑖=1

𝑛

1 − 1 = 𝑛 − 1

31

algorithm isprime2(n:integer) → boolean

if n <= 1 then
return false

end if

for i from 2 to sqrt(n) do
if n mod i = 0 then

return false
end if

end for

return true

end algorithm



algorithm ThreeSum(A:array) → integer
let n be the length of A
count ← 0

for i from 0 to n–1 do
for j from i+1 to n-1 do

for k from j+1 to n-1 do
if A[i] + A[j] + A[k] = 0 then

count ← count + 1
end if

end for
end for

end for

return count
end algorithm

Closed-form expression for the array 
accesses made by ThreeSum:

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=𝑖+1

𝑛−1

෍

𝑘=𝑗+1

𝑛−1

3

…after lots of steps…

𝑇(𝑛) =
1

2
𝑛3 −

3

2
𝑛2 + 𝑛

Type in Wolfram Alpha: sum (sum (sum 3, k=j+1 to n-1), j=i+1 to n-1), i=0 to n-1 32



Example: Selection Sort

algorithm SelectionSort(A:array) → array
let n be the length of A

for i from 0 to n-2 do 
idx ← i
for j from i + 1 to n-1 do 

if A[j] < A[idx] then
idx ← j

end if
end for
if i ≠ idx then 

swap(A, i, idx)
end if

end for

return A
end algorithm

33

Algorithm: select the smallest item to put into 
the current slot.

Let 𝐴 be an array of length 𝑛 storing unique 
items.

Q: What if 𝐴 is already sorted?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 = 0

Q: What if 𝐴 is sorted in descending order?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 =
1

2
𝑛

Think about an array 𝐴 for which the number of swaps is larger than 1

2
𝑛 .



Example: Insertion Sort

algorithm InsertionSort(A:array) → array
let n be the length of A

for i from 1 to n-1 do 
j ← i - 1
while j >= 0 and A[j] > A[j + 1] do 

swap(A, j, j + 1)
j ← j - 1

end while
end for

return A
end algorithm

34

Algorithm: Insert the current item into the proper 
slot in the sorted part of the array (left).

Let 𝐴 be an array of length 𝑛 storing unique 
items.

Q: What if 𝐴 is already sorted?
#compares: 𝑇 𝑛 = 𝑛 − 1
#swaps: 𝑇 𝑛 = 0

Q: What if 𝐴 is sorted in descending order?
#compares: 𝑇 𝑛 =

1

2
𝑛2 −

1

2
𝑛

#swaps: 𝑇 𝑛 =
1

2
𝑛2 −

1

2
𝑛



Example: Matrix Multiplication

𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

#multiplications = 8, #additions = 4

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑗 𝑘 𝑙
𝑚 𝑛 𝑜
𝑝 𝑞 𝑟

=

𝑎𝑗 + 𝑏𝑚 + 𝑐𝑝 𝑎𝑘 + 𝑏𝑛 + 𝑐𝑞 𝑎𝑙 + 𝑏𝑜 + 𝑐𝑟
𝑑𝑗 + 𝑒𝑚 + 𝑓𝑝 𝑑𝑘 + 𝑒𝑛 + 𝑓𝑞 𝑑𝑙 + 𝑒𝑜 + 𝑓𝑟
𝑔𝑗 + ℎ𝑚 + 𝑖𝑝 𝑔𝑘 + ℎ𝑛 + 𝑖𝑞 𝑔𝑙 + ℎ𝑜 + 𝑖𝑟

#multiplications = 27, #additions = 18

35



Closed-form expression for the 
additions and multiplications made by 
mult. Keep track of these numbers by 
using constants 𝑎 and 𝑚, respectively.

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

෍

𝑘=0

𝑛−1

𝑚+ 𝑎

= ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚+ 𝑎 𝑛 = ෍

𝑖=0

𝑛−1

𝑚+ 𝑎 𝑛2

= 𝑚+ 𝑎 𝑛3 = 𝑚𝑛3 + 𝑎𝑛3

More additions than expected! 

36

algorithm mult(A:matrix, B:matrix) → matrix

assume A and B are of dimension nxn
let C be a matrix of dimension nxn

for i from 0 to n-1 do
for j from 0 to n-1 do

C[i][j] ← 0

for k from 0 to n-1 do
C[i][j] ← C[i][j] + A[i][k] * B[k][j]

end for

end for
end for

return C

end algorithm



Closed-form expression for the 
additions and multiplications made by 
mult. Keep track of these numbers by 
using constants 𝑎 and 𝑚, respectively.

𝑇 𝑛 = ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚 +෍

𝑘=1

𝑛−1

𝑚+ 𝑎

= ෍

𝑖=0

𝑛−1

෍

𝑗=0

𝑛−1

𝑚+ 𝑚+ 𝑎 𝑛 − 1

= ෍

𝑖=0

𝑛−1

𝑚+ 𝑚+ 𝑎 𝑛 − 1 𝑛

= 𝑚+ 𝑚+ 𝑎 𝑛 − 1 𝑛2

= 𝑚𝑛2 +𝑚𝑛3 −𝑚𝑛2 + 𝑎𝑛3 − 𝑎𝑛2

= 𝑚𝑛3 + 𝑎𝑛2 𝑛 − 1

The number of additions we expected! ☺
Still a cubic number of multiplications 

37

algorithm mult(A:matrix, B:matrix) → matrix

assume A and B are of dimension nxn
let C be a matrix of dimension nxn

for i from 0 to n-1 do
for j from 0 to n-1 do

C[i][j] ← A[i][0] * B[0][j]

for k from 1 to n-1 do
C[i][j] ← C[i][j] + A[i][k] * B[k][j]

end for

end for
end for

return C

end algorithm



Matrix Multiplication Algorithm Goal

https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/ 38

https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/
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